
Particle Filter SLAM

Jiaming Lai1

I. INTRODUCTION

Particle Filter SLAM contains three part: (1) use Lidar
odometry data to estimate current robot state and perform
particle filter predict step; (2) based on the prediction result,
update particle and corresponding weight, resampling if
needed; (3) generate occupied map. In general, this is a
simultaneous localization and mapping task. This problem is
quite important for the following reasons: (1) an autonomous
vehicle or robot should be able to localize itself given sensor
data, for example, 2D Lidar scan and RGB-D camera frame,
etc; (2) the vehicle or robot should also generate environment
map, since this map could help correct localization and
navigation.

In our case, we propose particle filter slam method to
localize robot and generate environment map. In every it-
eration, given a set of lidar odometry data, 2D Lidar scan
data and joint data, we estimate robot body pose in world
frame and perform particle filter prediction step. We then
perform update step to generate new particle and weight,
and estimate robot body pose in world frame. In the end, we
use robot body pose as well as lidar scan to compute lod-odd
map, and then update our occupied map.

Data set was divided into two part: date 0, data 3 and
data 4 contain RGB and depth information, hence these set
could be used for generating texture map. date 1 and data 2
don’t contain RGB and depth information, hence these are
only used for generating occupied map.

The rest of paper is arranged as follows. First we give
the detailed formulations of particle filter SLAM problem in
Section II. Techinical approaches are introduced in Section
III. And in the end we setup the experiment, results and
discussion are presented in Section IV.

II. PROBLEM FORMULATION

A. Robot

1) Set-up: The center of mass keeps 0.93 meters above
ground. Robot head is 0.33 meters above center of mass
and lidar is 0.15 meters above head. Robot overview
please see Fig. 1.

2) Robot Body Pose: In our case, robot body pose is
represented by center of mass pose in world frame. We
simplify our model that the center of mass keeps 0.93
meters above ground. We also ignore Raw and Pitch

*This work was an project of ECE276A, University of California San
Diego

1Jiaming Lai is with Master of Department of Electrical and Computer
Engineering, University of California San Diego, 9500 Gilman Dr, La Jolla
jil136@ucsd.edu

rotation of robot body. The robot body pose in world
frame is represented as following:

Tw = [x,y,yaw]T ∈ R3

One of our objective is estimate robot body pose Tw
given sensor and map information.

3) Joint Angle: As we can see in Fig. 1, the head motor
and neck motor could perform Pitch and Yaw rotation
respectively. Those angles are provided in our data set.
The joint angles are represented as following:

J = [θn,θh]
T ∈ R2

Fig. 1: Robot overview

B. Lidar
In our case, lidar provides two information:

1) delta pose: robot body relative odometry between last
reading, represented by:

∆µ = [∆x,∆y,∆yaw]T ∈ R3

2) lidar scan: 2D lidar scan data with range from −135o

to 135o, represented by:

Sl ∈ R1×1081

C. Particle Filter
Given the sensor and robot information above, we perform

particle filter algorithm in every iteration. We use it to correct
robot body pose and update environment map.

1) Particle: Given the number of particle N, particle filter
try to maintain a set of particle in every iteration. The
set of particle is represented as following:

µ = [µ1,µ2, ...,µN ]
T ∈ RN×3

where µi = [xi,yi,yawi]
T ∈ R3.

2) Weight: Weights are updated in update step. The set of
weights is represented as W = [α1,α2, ...,αN ]

T ∈RN×1.



D. Map

After particle filter update step, we maintain a map given
lidar scan data. Given the grid number on x and y axis,
the map is represented as {M ∈ RNx×Ny}. More detail about
updating map please see techinical approaches in Section III.

III. TECHNICAL APPROACH
In this section, we will discuss about the algorithms and

methods used in our project.

A. Algorithm Overview

Suppose we have K frames of lidar scan and our down
sample rate is 2, the overview of our method is show as
following.
Algorithm 1: Algorithm Overview

Result: map, robot track
initialization;
generate map with 1st lidar scan;
for it = 2,3,...,K do

estimate new robot pose;
particle filter predict step;
if it % 2 = 0 then

particle filter udpate step;
estimate new robot pose;
update map;
if N f f > threshold then

resample step;
end

end
end

The following subsections would introduce each step in
detail.

B. Estimate Robot Pose

We performs this operation at the beginning of every
iteration and also after particle filter update step. The initial
robot pose is set as [0,0,0]T . In estimate step, we choose
the particle with maximum weight as our new robot pose.
Hence a new robot pose in world frame is estimated as

Tw = µi∗ = [xi∗ ,yi∗ ,yawi∗ ]
T

where
i∗ = max

i
(αi),αi ∈W

At the beginning of every iteration, we will perform estimate
step and add the new robot pose to our robot track record.

C. Particle Filter

1) Parameter Initialization: The initial state of all particle
is set as [0,0,0]T . The following are some hyper-
parameters name and corresponding meaning.

– Number of particle: number of particles we use.
In experiment section, we would try 1200 and
2000 particles respectively. More detail please see
Section IV.

– Down sample rate: in order to lower computing
time consume, we perform n predict steps and then

one update steps. This parameter n is down sample
rate. By default, we set it as 2.

– Noise: scalar giving noise level when performing
predict step. We should adjust it to get better
performance. By default, we set it as 3e−2.

– Resample: scalar giving threshold of N f f deciding
whether to perform resampling. By default, we set
it as 25% of the number of particle we use.

2) Predict Step: This step use robot body relative odometry
from lidar to predict new particle set. Given ∆µ , a new
set of particle is predicted by

µnew = [µ1 +∆µ,µ2 +∆µ, ...,µN +∆µ]T

We also add noise to every new particle. Noise is gener-
ate from a standard Gaussian distribution and multiply
with hyper-parameter ’Noise’ scalar we say above.

3) Update Step: This step update weight of every particle.
Given a set of lidar scan Sl , a generated map in previous
step and particle set, we first transform lidar scan Sl
in lidar frame to Sb in body frame using joint angles
J = [θn,θh]

T . Then, for each particle, we transform lidar
scan Sb in body to Sw in world frame, and then compute
correlation value between Sw and map {M ∈ RNx×Ny}.
Hence we get a set of correlation value of each particle

corr = [c1,c2, ...,cN ]
T ∈ RN

Using softmax function, we get probability distribution

ph = [
exp(c1)

∑exp(ci)
,

exp(c2)

∑exp(ci)
, ...,

exp(cN)

∑exp(ci)
]T

Finally, we update particle weight as following

αnew = [
α1(ph)1

∑αi(ph)i
,

α2(ph)2

∑αi(ph)i
, ...,

αN(ph)N

∑αi(ph)i
]T

4) Resample Step: We perform this step when N f f is lower
than a threshold we set. N f f is computed as following:

N f f =
1

∑
N
i=1 α2

i

Our resample strategy is Stratified and Systematic
Resampling. The strategy is shown in Fig. 2.

D. Map Update

In this section, we maintain a lod-odd map using lidar scan
data. Note that, before we perform map update operation,
we should estimate current robot pose first. Given a lidar
scan in lidar frame Sl , we transform it to lidar scan Sw in
world frame using current robot pose and joint angles. We
use cv2.drawContours to get mask of lidar scan cover area
in map. The grids in this contour interiors are regarded as free
cell while grids outside this contour interiors are regarded as
occupied. The initial log-odds of the map is set as λi,0 = 0,
where i represents grid. In No.t iteration, the map log-odds
are updated as following:

λi,t = λi,t−1− log(4), i f grid i is regarded as f ree

λi,t = λi,t−1 + log(4), i f grid i is regarded as occupied



Fig. 2: Resample strategy

The map is shown using plt.imshow with cmap=gray.
Example from data 0 is shown in Fig. 3. The black grids
represent free area, and the white grids represent occupied
area.

Fig. 3: Map example

IV. RESULTS

In this section, we will shown and discuss results generated
from data set. We will show map in some iteration and final
map with robot trajectory. The green line represents robot
trajectory.

A. Data 0

The final map with robot trajectory is shown in Fig. 4.

B. Data 1

For this data set, we try two different number of particle.
The final map with robot trajectory is shown in Fig. 5
and Fig. 6. We can see that by adding more particle, our
performance has significant improvement. The noise in these
two experiment is about 3e−2.

Fig. 4: Data 0 Final Map and Trajectory

Fig. 5: Data 1 Final Map and Trajectory with 1200 particle

Fig. 6: Data 1 Final Map and Trajectory with 2000 particle



Fig. 7: Data 2 Final Map and Trajectory with 1200 particle

C. Data 2

The final map with robot trajectory is shown in Fig. 7.

D. Data 3

The final map with robot trajectory is shown in Fig. 8.

Fig. 8: Data 2 Final Map and Trajectory with 1200 particle

E. Data 4

For this data set, we try two different number of particle.
The final map with robot trajectory is shown in Fig. 9 and
Fig. 10. The same as data 1, we can see that by adding more
particle, our performance has significant improvement. The
noise in these two experiment is about 3e−2. But the final
map is still not perfect, because some walls are not parallel.
The reason is that, the robot walks for a longer trajectory
and perform Yaw rotation more times than the other data
set. Hence the deviation of odometry accumulate to relatively
large scale.

Fig. 9: Data 4 Final Map and Trajectory with 1200 particle

Fig. 10: Data 4 Final Map and Trajectory with 2000 particle

V. DISCUSSION

Our method work pretty well in data 0, data 1, data 2 and
data 3. However, in data 4, our method work not well.

As we discuss above, increasing number of particle would
significantly improve our final performance. Once we in-
crease the number of particle, we could also increase noise
level in particle filter predict step. But note that, increasing
particle would lead to more computing time consume. So this
is a trade-off we should consider carefully. In some cases,
for example situation in data 4, the robot walk in a long
trajectory and perform Yaw rotation many times, our method
may fail in the end. The deviation would accumulate to a
large scale. It is intuitive because our model is simplified.

VI. CITATIONS

The method of updating map using cv2.drawContours is
inspired by Jiangeng Dong.


